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Abstract

The “Conservation Law for Generalization
Performance” [Schaffer, 1994] states that for
any learning algorithm and bias, “generaliza-
tion is a zero-sum enterprise.” In this paper
we study the law and show that while the law
is true, the manner in which the Conserva-
tion Law adds up generalization performance
over all target concepts, without regard to
the probability with which each concept oc-
curs, is relevant only in a uniformly random
universe. We then introduce a more meaning-
ful measure of generalization, ezpected gener-
alization performance. Unlike the Conserva-
tion Law’s measure of generalization perfor-
mance (which is, in essence, defined to be
zero), expected generalization performance
is conserved only when certain symmetric
properties hold in our universe. There is no
reason to believe, a priori, that such symme-
tries exist; learning algorithms may well ex-
hibit non-zero (expected) generalization per-
formance.

1 INTRODUCTION

The theoretical analysis of inductive learning algo-
rithms over all learning situations has been the subject
of some recent research [Wolpert, 1992; Schaffer, 1993;
Wolpert, 1994]. This paper begins by focusing on a
recent result for concept learning, the “Conservation
Law for Generalization Performance” [Schaffer, 1994].
This law states that for any learning algorithm and
bias, “positive performance in some learning situations
must be balanced by negative performance in others.”
The Conservation Law (henceforth, cLGp) has been
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likened by its author to other natural laws of conser-
vation, and has attracted considerable attention in the
learning community. In this paper, we study this law
to understand its implications for inductive learning.
(The cLGP is a reiteration of earlier “no-free-lunch”

theorems developed by Wolpert [1992, 1994].)

In Section 2 we perform a rational reconstruction of
the proof of the cLGgp. This proof is implicitly the
same as in Schaffer [1994], but makes explicit the fact
that getting zero generalization performance depends
on only one thing: the CLGP’s uniform summation over
target concepts (as in Wolpert [1994]). We later use
this reconstruction to show that the way the cLGP
sums generalization performance is relevant only in a
uniformly random universe. This indicates that the
CLGP, while trivially true, is not particularly relevant
for inductive learning.

In a uniformly random universe, learning is necessar-
ily impossible. We are interested in characterizing the
properties of universes in which learning is indeed im-
possible. To this end, in Section 3 we present a more
meaningful measure of generalization, ezpected gener-
alization performance (£GP), which measures the ex-
pected performance of a learner. This measure, unlike
the interpretation of the cLGP in Schaffer [1994], does
not preclude the existence of a general bias for learning
in a universe. We then characterize the conditions un-
der which ezpected generalization performance will be
conserved: each of these require certain symmetries to
exist. In Section 4 we propose a criterion for all learn-
ers for determining how close our universe comes to
matching the required symmetry for zero EGP.

2 CONSERVATION LAW
REVISITED

In this section we show that the CLGP is equivalent to
the statement:

Labeling an unseen example as positive (or neg-
ative) results in a generalization accuracy of



0.5, when the generalization accuracy is (ef-
fectively defined as being) measured uniformly
against both possible classifications (i.e., posi-
tive or negative).

2.1 THE CONSERVATION LAW

We use notation similar to that used in the CLGP pa-
per, namely, that there is a finite set of m possible at-
tribute vectors or cases, and a target concept C that
classifies each of these cases into one of two classes, Cj
and C;.! Using a sampling distribution, D, we draw
n samples and classify them according to C' to form
a training set, #.2 A learner, £, generalizes from @ to
produce a concept that can classify previously unseen
cases. Like the cLGP, we consider the learner’s accu-
racy only on cases that are outside the training set, i.e.,
cases with attribute vectors not in §. We distinguish
between performance and accuracy where performance
is identical to an analogous accuracy measure reduced
by 0.5, i.e., performance is the improvement over ran-
dom guessing.

A learning situation, S, is the triple (D C,n). The
generalization accuracy of a learner £ in a learning
situation S is denoted by GA(L,S): it is defined as
L’s accuracy, with respect to C', over all unseen cases
(weighted according to D). (We provide a precise def-
inition of generalization accuracy later in Equation 5.)
The generalization performance of £ is GP(L,S) =
GA(L,S) — 0.5. Throughout this paper, the term
“learner” (or learning algorithm) is equivalent to the
bias [Mitchell, 1980; Utgoff, 1986] used by £ to gener-
alize from 6 to unseen cases, and “YL” should be read
as “for all learning biases.”

The cLGP states that in a classification problem, for
any learning algorithm the total generalization perfor-
mance over all learning situations is zero.

VL Y IGP(L, )] =YL D [GA(L,S)—05] =0
VL > S S IGAL, (D, Cn)) =051 =0 (1)

Henceforth, we will drop the parentheses around
(D, C,n) and use the notation, GA(L,D, C,n). Later
in this section, we introduce a new term, the average
generalization accuracy, which sums the total gener-
alization accuracy over all concepts. Upon restating
the CLGP in terms of this new metric, we find that the
CLGP sums up a large number of terms, each of which

!Continuous attributes can be discretized to any arbi-
trary degree of accuracy. The results in this paper can be
trivially extended to cover multiple-class prediction as well.

2We do not assume D is iid or restrict it in any other
way. Furthermore, D could depend on C: for example, in
an active learning scenario, the classification of the cases
already in € can affect the probability with which future
cases are drawn into .

> [GA(L,D, C,0)-0.5] =

is zero (by the very definition of the cLGP). In the
rest of this section, we will demonstrate that the cLGp
(Equation 1) is equivalent to Equation 10, which we
restate below,

VL DTS (prob(9) - (0)) =

In short, by summing generalization over all target
concepts, the CLGP virtually defines GP to be 0 for all
6, n, and D, and the summation over training set sizes
and sampling distributions (in Equation 1) is redun-
dant.

2.2 ANALYZING THE CONSERVATION
LAW

We begin by expanding the summation over training
set sizes, and then focus on the crux of the CLGP: uni-
formly summing over all target concepts.

Summing over training set sizes, n: The gener-
alization accuracy for an arbitrary n, GA(L, D, C, n),
is computed by averaging GA(L, D, C, ) over all 8’s of
size n. We can expand that term:

E[QA(E D,C,n)—05] =

2 >

n fofsizen

(prob(0) - [GA(L,D, C,0) — 0.5])

where prob(f) is the probability of drawing the n sam-
ples in the training set, é, from the given sampling
distribution, D. By substituting in Equation 1, the
CLGP can be rewritten as:

VL ZZZZ prob(0

If a concept, C, classifies at least one of the samples in
¢ differently from the observed sample, then prob(f) =
0 for all such concepts, C'. Interchanging the order of
summation, we get:3

Ve Y ST 3 (prob(6) - Y IGAL, D, €,6) — 0.5)) =
n ) (2)

Summing over all target concepts, C: The sum-
mation over all target concepts C' in Equation 2 above
is the critical feature of the cLGP. For an arbitrary £,
D, n, and 6 (of size n) this can be written as:

Y GAL, D, C,0)]-05> {1}
C C C

> o1} = |C| is the total number of possible target
concepts that are consistent with the given 6. Note

)-[GA(L,D, C,0)—0.5]) = 0

3Strictly speaking, we should write Zc/e in Equa-

tion 2, where (/8 is the set of all possible concepts which
are consistent with the classification of samples in 6.



that the first term above (D~ GA...) is the total gen-
eralization accuracy; that is, the generalization accu-
racy of the concept learned by £ (for the given ¢ and
D) summed over all possible targets. This can be
rewritten as:

> GA(L,D,C,0)-05-|C| =

o1 (BeBAED.CO)_

The first term within the parentheses above
(O-c GA(..)/IC]) is the total generalization accu-
racy over all targets divided by the number of tar-
gets, namely, the average generalization accuracy of a
learner, £. It is denoted by AGA,(D, ), or more sim-
ply AGA,. To isolate the manner in which the cLGp
sums generalization over all target concepts, we restate
the cLGP in terms of AGA, (dividing both sides of the
CLGP in Equation 2 by |C):

VL Z Z Z(prob

where AGA.(D,0) =

JAGAL(D,0) — 0.5]) = 0

ZCQA(é'D C,0) ‘)

Computing the generalization accuracy:
GA(L,D, C,0) is defined as L’s accuracy over all un-
seen cases with respect to C'; this depends on how £
maps unseen cases to classes. Consider an arbitrary
training set, 8, of n cases which are labeled by a tar-
get, C, and are drawn from a sample distribution, D.
Let Z(8) (or more simply, Z) be the set of all unseen
cases, let k(#) (or more simply, k) be the number of
distinct cases in Z, and ¢; € Z,1 < i < k.* We define
a label, f, as a mapping f : Z — {Cy, C1}. (Through-
out this paper we will use f or f; to refer to arbitrary
labels, and [ to refer to labels learned by £.)

For illustrative purposes we make three simplifying as-
sumptions: that given #, £ learns a single label classi-
fying the unseen cases, [ = £(6), and that [ and C' are
not stochastic. (We relax these assumptions in Ap-
pendix A.) As ! maps each e; € Z to either Cj or C1,
[ can be represented by a k-bit binary vector:®

B 1 ifl(e) =Cy
| = <b1b2 .. bk) bz — { 0 if l(el) = C’o (4)

For the particular target concept, C', used to label all
cases, perfect generalization is achieved by the label
fo 1 2 — C(e;). We can measure L’s generalization
accuracy by comparing the two labels, [ and fo. Let
Dz (e;) be the conditional probability of sampling e; €

*As 6 can contain repeats in its n samples, k > (m —n).

®Whereas { typically maps all m cases in (29) to
{Co,C1}, recall that for generalization purposes we are
only interested in I’s mapping from e; € Z.

Z, given 6.° If I(e;) is the class assigned to e; by [ (i.e.,
I(e;) is the value of the i** bit of the binary vector { in
Equation 4 above), then:

GA(L,D,C,0)= > [Dzles) - 6(l(ei), fo

e, €EZ

(€:))]

1 ifa=5b

where 6(a, b) = { 0 otherwise (5)
Computing the average generalization accu-
racy: AGA, is calculated by summing £’s total gen-
eralization over all targets and dividing by |C/, the to-
tal number of targets (see Equation 3). For k unseen
cases, there are 2% distinct ways of assigning classes to
cases in Z; each assignment (label) represents a dis-
tinct “target concept” and |C| = 2%. Let F be the set
of all possible labels of Z, and let f; € F,1 <j < 2k,

For clarity, we shall drop references to 8, D, and £
wherever possible, with the understanding that Z, k,
and F are functions of #, and that £ learns a single
label, | = £(6). Therefore, for all D, 6, and L, the
average generalization accuracy of £ over all target
concepts is deﬁned as:

AGA; = |ZGA£D C,0)

fi€F

= Qk Z Z[DZ

fi€F ei€2

(ei), fi(e:))] (6)

2.3 UNDERSTANDING THE
CONSERVATION LAW

In this subsection, we show that AGA, is always 0.5.
Interchanging the order of summation in Equation 6
and rearranging the terms, we get:

AGA. = QL,C > > [Daler) - 6(1(e),

ei€Z fEF

- Y 0ute)
e, €EZ

fi(ei))]

25(1 ei))|)

fieF

The term within the square brackets [] above averages
the accuracy of [ on a single case, e;, over all 2% labels
(targets) in F; therefore, that term can be thought of
as the average generalization accuracy of £ (or {) on
that case.

AGA: = Y [Dzles) - AGAc(e:)]  (T)
AGAL(ei) = 2%25(1(62')%(@2')) (8)
fieF

61f the sampling distribution for “testing” is iid and is
the same as the “training” distribution, then Dz may be
derived from D by uniformly normalizing D for all e; € Z.
However, for many scenarios, such as active learning, Dz
may be very different from D.



where AGA,(e;) is the average generalization accuracy
of I(= L£(#)) on a single case in Z (averaged over all
target concepts). Equation 7 is an intuitive restate-
ment of the generalization accuracy of a learner as be-
ing the weighted sum of the generalization accuracy of
the learner on individual cases, weighted by the prob-
ability of drawing each case in Z.

Consider Equation 8 above. Assume, without loss of
generality, that [ labels an arbitrary unseen case, €;, to
be Cyy. Notice that half the 2% concepts fj € F classify
e; to be Cy (for these §((e;), fj(e;)) = 1) and the other
half classify e; to be Cy (for these 6§({(e;), fj(eo)) = 0).
From Equation 8, AGA,(e;) reduces to 0.5 for all cases.
This is also true for all possible labels, /, and for all
possible assignments of cases to § and Z. Therefore:
Ve; € Z,AGA;(e;) = 0.5. Recall that other than
the three simplifying assumptions made in Section 2.2
(which we will relax in Appendix A), no restrictions
of any kind have been placed on 8, D, n, C, and L.
Therefore, noting that > Dz(e;) = 1, Equations 7

e, €2
and 8 reduce to:
VL, D,n,00f sizen, AGA;(D,6) = 0.5,
and Ve; € Z, AgAg(el) = 05 (9)

From Equations 7 and 8, the cLap (Equation 3), can
be rewritten VL as (Note Ze,EZ Dz(e;) =1):

> prob(8) - { > [Dzle:) - AGAc(e:)] — 0.5} = 0

D,n,d e;€EZ
> prob(8) - > [Dz(ei) - {AGAL(e;) — 0.5}] = 0 (10)
D,n,b e €2

Because AGA,(e;) always equals 0.5 (Equation 9), ev-
ery term in the innermost summation {} is identically
0. Therefore, the following very simple statement is
equivalent to the cLGP: Given one (unseen) case, la-
beling that case to be of class Cy (or C1) will result in
zero generalization performance when generalization is
summed uniformly over the two possible classifications

{Cy, C1} for that case.

3 AN ALTERNATE MEASURE OF
GENERALIZATION

Every labeling of an unseen case does give a generaliza-
tion performance of O when summed over both possible
classes. While this statement may not be particularly
interesting, it certainly is true; what does interest us is
the impact, if any, of this statement on machine learn-
ing. Schaffer [1994] states that “Roughly speaking, the
[cLGP] result indicates that generalization is a zero-
sum enterprise - for every performance gain in some
subclass of learning situations there is an equal and
opposite effect in others,” However, we find ourselves
in the position of believing that induction is certainly
far from hopeless in our universe, and also admitting

that the cLGP is (trivially) true. Therefore, it must
be the case that the cLGP, while true, is not really
applicable to “learning” as we are interested in it.

Suppose we consider more carefully the analogy of the
CLGP being similar to physical laws of conservation,
such as the conservation of momentum and energy and
the “equal and opposite reaction” force law. These
laws do not consider the distribution over the units
being conserved and, as with the cLGP, simply count
the units. This is reasonable for physical laws because
(for the purposes of any particular conservation law)
these units are considered to be indistinguishable from
each other; that is, one unit of momentum is equiva-
lent to and indistinguishable from any other unit of
momentum (as any joule is equivalent to any other
joule). However, there is no reason to expect that all
concepts are in any sense equivalent or indistinguish-
able. “Pure” induction is impossible — if one does not
distinguish between concepts. This statement, how-
ever, has little meaning in the real world, where the
distribution over target concepts is an important piece
of information (that is ignored by the cLGP).

For example, when Schaffer [1994] shows “how the con-
servation law applies to a real learner,” i.e., the major-
ity learner, he ignores the distribution over target con-
cepts. Once these distributions are considered, how-
ever, it is not hard to create learners with net positive
(or negative) generalization. In this section, our goal is
to include information about distributions over target
concepts and examine the Conservation Law in light of
this information. We do this by presenting a different
metric, EGA, that measures a learner’s expected gener-
alization accuracy. We compare £GA with the CLGP’s
(implicit) AGA measure, which sums (averages) gen-
eralization accuracy over all target concepts. We then
pose the query: “Under what conditions will expected
generalization performance be conserved?” The an-
swer allows us to determine the class of universes in
which learning is impossible.

3.1 EXPECTED GENERALIZATION

The real world is reflected by a target concept, C, that
(correctly) classifies all m cases in the problem domain
for any particular experiment. Specifically, we are in-
terested in the target label, fo : 2 — C(e;). What
we truly want to measure is not how well a learner can
generalize over all possible concepts, but how well the
learner actually does with respect to the actual target,
fc. Recall from Equation 5, that for an arbitrary 6
and D, the generalization accuracy of £ is:

GA(L,D,C,0) =" Dyles) - 6(l(es), fo(e:))

e;EZ

The problem, obviously, is that we do not know f¢;
in fact, each one of the labels f; € F is a potential
candidate for fc. (Recall from Section 2.2 that F was



Table 1: A non-uniform distribution of target concepts, Pz, and the expected generalization performance (£GP)
of different learners based on their predictions on the test cases, over all target concepts. Each cell of the main
part of this table contains the generalization performance of a learner (column) for a particular target concept
(row). In the final column, the generalization performances for each concept, weighted by the Dz(e;)’s, are

summed to calculate the EGP.

L(0) 2, Dz(e)[8(l, f;) — 0.5]} >f, Pz{}
=1 Pz(—|——|—) =04 | Pz(——) =04 | Pz(—l——) =0.1 | Pz(——{—) =0.1 = SQP
++ +0.5 —-0.5 0 0 0
- —-0.5 +0.5 0 0 0
+— 0 0 +0.5 —-0.5 0
—+ 0 0 —-0.5 +0.5 0

defined as the set of the 2% possible labels of Z.) So far
the discussion on the CLGP has ignored the distribu-
tion of target concepts. Let P denote the distribution
of target concepts over all m possible cases; given a
specific 8, we are interested in Pz, the distribution of
target concepts over the corresponding Z conditioned
on @, the information that we have already seen.” Let
Pz(f;) be the conditional probability that a particu-
lar label f; is the target label, conditioned on #. Since
we have no way of knowing for certain which f; is the
target label (for the current experiment), the best we
can measure is the expected value of the generaliza-
tion accuracy of a learner: the expected generalization
accuracy, EGA,.

EGAL =Y (Pz(f;)- Y [Dz(ei)-8(l(es), file))])

fiEF ei€2
(11)

Before we examine this new measure, let us compare
EGA with the CLGP’s average generalization accuracy
metric, AGA.. From Equation 6:

AGA: = ) (%k' > Dz(er)-6(U(eq), fi(ea)]) (12)

fi€F ei€2

Comparing Equation 11 with Equation 12 we notice
that the cLGP implicitly assumes that Pz(f;) = 1/2F
for all possible targets, f; € F. This corresponds
to the uniform concept distribution, Pz-random, in

"Under a variety of assumptions, Pz may be derived by
uniformly normalizing the probabilities of all concepts in
‘P that are consistent with 8. However, this, by no means,
is always the case. For instance, assume that a benevolent
teacher, who is aware of the target concept and has access
to all the cases, provides the n samples in €. Furthermore,
assume that the teacher provides only those samples which
would be classified as positive by the target concept (unless
all possible positive examples have already been provided).
Then the presence of a single negative example in a partic-
ular § means that the only concept (in Pz) with non-zero
probability of being the target is the one which labels all
the unseen cases negative. Thus, Pz can be very different

from P.

which every possible classification of unseen cases is
equally likely. This is the definition of a uniformly
random universe, in which learning is impossible.®

3.2 WHEN IS EXPECTED
GENERALIZATION CONSERVED?

The pertinent question for real-world data is: When
is the ezpected generalization performance equal to 07
That 1s, under what conditions will all learners have
zero EGP ? Recall Equation 2 from Section 2 that re-
states the cLGP:

VLD DTS (prob(0)- > [GAL, D, C,0)—05]) =0

fi€F

A condition for conserving EGP(= £GA — 0.5) would

have the form:®

VL Y DD (prob(6) - [EGA: —0.5]) =0 (13)

The degenerate situation is when £GA, = AGA,, i.e.,
for every £, D, n, 0 (and ¢;), EGA. is always 0.5 (i.e.,
Pz-random). There are, however, many other Py
distributions for which expected generalization per-
formance (£GP) is conserved. All these distributions
appear to share a common symmetry property. Be-
fore characterizing the conditions under which £GP is
conserved, we first provide an example that illustrates
how a non-uniform Pz distribution can conserve EGP.
We abbreviate €y with “+” and Cy with “—”. Sup-
pose there are two unseen cases, Z = {ey,es}, where

81t is the uniformly random universe that is implicitly
used in the majority learner example in Schaffer [1994].

®Just as we weight 6 with prob(§), the probability of
drawing the n samples in the training set for a given n
and D, we could also weight Equation 13 with prob(n), the
probability that we will choose to draw n samples from a
given D, and with prob(D), the probability that D is the
sampling distribution. For the purposes of this paper we
will assume that prob(n) and prob(D) are uniform. Future
work will relax this assumption.



Dz(e1) = Dz(e2) = 0.5. The second row of Table 1
displays Pz, the probability distribution for the four
possible target concepts over the unseen cases. Note
that this is not a uniform Pz distribution; however
each unseen case is equally likely to be positive or neg-
ative. For example, the probability that e; is positive
is equal to Pz(++) + Pz(+—) = 0.5, and the prob-
ability that e; is negative is equal to to Pz(—+) +
Pz(—-) = 0.5.

Consider four possible learners which produce the la-
bels (++), (==), (+-), (—+), respectively.!® Each
learner corresponds to a row of Table 1, and each tar-
get concept corresponds to a column. Recall from
Equation 5 that a learner gets an accuracy score of
+1 for each correct prediction, and 0 for each incor-
rect prediction. This corresponds to a generalization
performance score {6(I(e;), fj(e;)) — 0.5} of +0.5 and
—0.5 for a correct and incorrect prediction, respec-
tively. The bottom 4 rows of Table 1 display the gener-
alization performance for each of the four learners with
respect to each of the four target concepts; that is, the
above performance score weighted by Dz (e;) for each
(I, f;) pair. The final column in the Table 1 presents
the EGP (= EGAz —0.5): the sum of the different gen-
eralization performances weighted by Pz(f;). Notice
that £GP is zero for every learner; thus, generalization
is impossible for this Pz.!!

Substituting the value of EGA, from Equation 11 into
Equation 13 and rearranging, the condition for conser-
vation of £GP can be rewritten as:

VLY DD (prob(0) - Y (Pa(fy)-

fi€F
> Dylei) - [6(l(ei), fi(e:) —0.5]) =0
VLY DD (prob(8) - > Daler) -
> (Pa(f) - [8(es), fi(es)) —05) =0 (14)
fieF

The question, of course, is when this holds. Although
the answer to this question is mathematically obvious,

10This example considers only Boolean learners and
Boolean targets. However, all possible learners (targets)
can be expressed as weighted combinations of these learn-
ers (targets). So if EGP = 0 for these learners, it follows
that £GP will be conserved for all learners.

"' Note that the CLGP’s total generalization performance
measure would simply sum each row in Table 1 without
considering the weight of each target concept; this would
result in zero GP. If the probability distribution over tar-
gets, Pz, in Table 1 was changed, say Pz(f; = ++) =1,
and Pz(f;) = 0 for all other target concepts, the total GP
would still be zero, However, the £GP would now be non-
zero: for instance, the learner “(—i——l—)” would have positive
generalization.

in the remainder of this section we elaborate situa-
tions for which £GP is conserved (Equation 14) on a
case-by-case basis. We do so in order to elucidate the
types of symmetries that would result in zero £EGP.
Our motivation for this elaboration is that associated
with each situation is an open research question as to
whether this type of generalization performance sym-
metry holds in our world. Obviously, one particular set
of cases when £GP is conserved is when the innermost
summation of Equation 14 is always zero.

YL, YD, ¥n, Y0, Ye; € Z(0)
> APz (£) - [B(U(es), fi(es)) — 0.5]} =0

fi€F

There are a number of ways to satisfy these equations.
The most obvious, mentioned above, is when each un-
seen case is equally likely to be positive or negative.
Let Q(l,ei) = 324, (Pz(£;)(6(U(es), fi(ei)) — 0.5)), or
more simply Q, represent the expected generalization
performance of a learned label [ on a single unseen
case e;. Then examining Equation 14, another way
to achieve zero expected generalization performance is
when > (Dz - Q) = 0. Therefore, if it is not the case
that both classifications of test cases are equally likely,
it is still possible for £GP to be conserved if the fol-
lowing symmetry property exists: For some partition
of the unseen cases into two subgroups, Z; and Zs,
YoeezPz(ei)-Ql = — 32, ¢7,[Dz(ei)- Q] (Notice
that if this is true for one partition, it is true for every
partition.)

We next consider cases where the outer three summa-
tions -, > . >, contribute toward satisfying Equa-
tion 14. In other words, the inner sums of Equation 14
might be nonzero, but one or more of the three outer
summations might produce a final result of 0. We
consider the outer sums of Equation 14 one by one,
beginning with the innermost one >,. For £GP to be
conserved for all £, D, and n, it must be the case that
for some (every) partition of all possible training sets
into two classes, ©; and O, the following must hold:

E prob(8) E Dz(e;) - Q

€0, ci€Z
=- Z prob(6) Z Dz(e;) - Q
€@, ei€2

In other words, if we consider all possible training sets
of size n, positive expected generalization performance
on some unseen (test) sets needs to be exactly coun-
terbalanced by negative expected generalization per-
formance on the remaining possible unseen (test) sets
(when weighted by the conditional probabilities of the
0s). Likewise, for some (every) partition of training set
sizes n into Ny and N, >~ -y [..] = _.ZnENZ[' .
must hold for the £GP to be conserved if the inner
sums (including > ,) are nonzero. Finally, for the out-
ermost summation, > 5, we are again faced with the



same situation: for some (every) partition of the dis-
tributions into D; and Ds, generalization performance
must be balanced between the two subgroups.

In summary, for each level of summation, if symmetry
does not hold at some inner level but it holds at the
next outer level of summation, the £GP will be con-
served. Of course, the symmetry need not hold within
the set of all possible 6’s, n’s, or D’s (via partitioning
as we just did). Alternatively, there could be a corre-
lation between #, n, and D (or some subset thereof)
with respect to generalization performance. To cap-
ture this, we consider the most general conditions un-
der which £GP is conserved. Earlier, we stated that a
learning situation, S, is defined by the triple (D, C', n).
We now define a more specific learning situation, S*,
as (D,Dz,n,0,P,Pz). Then the most general condi-
tion for the £GP to be conserved is: for some (every)
partition of S* into S} and S5 the following symmetry
must hold (for all learners, £):

> lprob(8) - Dz(e) - [Pz (f) - [8(U(e), f(e)) — 0.5]]] =

1

=Y [prob(6) - Dz(e) - [Pz (f) - [8(l(e), £(e)) — 0.5]
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To summarize the discussion in Section 3, for £GP to
be conserved, positive EGP on some subset of all possi-
ble situations must be exactly counterbalanced by neg-
ative EGP on the remaining possible situations. This is
the same argument that has been presented in [Schaf-
fer, 1994] regarding GP; here, however, we present the
argument in terms of a real-world measure, namely,
the £GP. We have demonstrated that £GP, unlike
the CLGP, is not trivially conserved but instead raises
an intriguing and important question: What about the
existence of the symmetries required for zero-£GP in
our universe? Although the cLGP cannot be empiri-
cally tested in the real world — because it ignores the
practical consideration of distributions — the EGP can
be. From the evidence to date, there is no reason to
believe that Pz (or P) has precise symmetry prop-
erties. (Furthermore, it is virtually tautological that
learning is possible in our universe.) We rarely find
test sets for which it is random whether an instance
will be positive or negative. Nor do we typically find
learners whose good performance on some real-world
test sets is exactly counterbalanced by equally poor
performance on others. Nevertheless, a very interest-
ing open question is how close our universe comes to
matching the required symmetry for zero EGP, where
we propose:

TEGP =
Z (prOb(g) : Z [pZ(fJ) : [gA(‘C’D’ c, 9) - 05]])

D,n,o fi€EF

from Equation 14 as a measure of 7EGP, the total
EGP of any learner, L.

Perhaps there are natural constraints that enforce ap-
proximations of some of these symmetries and thereby
make the 7EGP-measure close to 0 for every (or al-
most every) learner £. If so, then learning could
be considered ”very difficult” in our universe and it
would be hard to find one learner that predicts bet-
ter than another. Alternatively, perhaps there exist
natural constraints that preclude our universe from
being close to having these symmetries for all learn-
ers, thus making learning a very valuable enterprise.
Some physicists’ theories about our world have been
highly predictive of unseen data. This leads us to con-
jecture that our world has strong regularities, rather
than being nearly random. However, only time and
further testing of physical theories can refine our un-
derstanding of the nature of our universe. Scientific
progress might lead to a reasonable estimate of Py
in our world, for example. Until that time, we agree
with Wolpert [1994] that researchers should be careful
not to say Algorithm A is better than Algorithm B
without mentioning that this holds with respect to a
particular problem distribution.

While we do not agree with the cLGP’s claim that all
learners must be zero-sum generalizers, we do agree
with some of the points raised in Schaffer [1994]:
that the study of bias is critical, that careful stud-
ies of learners (and biases) often reveal weaknesses
on some data sets as well as strengths on other
data sets (e.g., see [Fisher and Schlimmer, 1988;
Holte, 1993; Ade et al., 1995; Brodley, 1995; Provost
and Buchanan, 1995]), that it is imperative to con-
sider priors (see [Dietterich, 1989; Buntine, 1991; Bun-
tine, 1993; Haussler et al., 1994]), and that we should
focus on off-training set error (see [Wolpert, 1992;

Wolpert, 1994]).

In addition to the focus on off-training set error,
Wolpert [1994] also points out other ways in which
his results differ from prior learning theory, in partic-
ular, PAc [Valiant, 1984]. First, PAC analyses typically
assume the concept class is known a priori; the cLGP
does not. Second, PAC is concerned with whether it
takes polynomial or exponential time to achieve a de-
sired predictive accuracy; the cLGP boils down to a
question of predictive accuracy on a single unseen in-
stance.

In a nutshell, the underlying assumptions of the cLGP
can be summarized as stating that all of our obser-
vations in the past have no bearing/relation to what
we will see in the future. This is patently not a pacC
assumption.

In this paper we have shown that the CLGP is equiv-
alent to the statement: classifying an unseen case as
positive (or negative) results in an generalization accu-
racy of 0.5, when the accuracy is measured uniformly



against both possible classifications (i.e., positive or
negative). Once you sum generalization uniformly over
all concepts, the total generalization is always zero in
every learning situation. Therefore, it is redundant
to sum over all learning situations (i.e., over all dis-
tributions and training set sizes as done by the cLGP
in Equation 1). We have also introduced the notion
of expected generalization performance, or £GP, and
presented a corresponding measure which allows us to
compute the EGP for any learner. This measure is zero
for all learners, if and only if our universe is symmet-
ric as defined in Section 3. If this symmetry does not
exist, non-zero EGP is possible and one learner can be
better than another.
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A RELAXING THE SIMPLIFYING
ASSUMPTIONS

Here, we sketch rough proofs showing that our restate-
ment of the CLGP holds even after we relax the sim-
plifying assumptions we made in Section 2.1. In other
words, zero-sum GP depends only on summing up gen-
eralization over all target concepts, and is independent
of the earlier assumptions. We will now permit £ to
learn multiple labels, and we will allow these labels
and the target concepts to be stochastic.

Let a learner probabilistically learn labels, I;, each
with some probability, w; (>-w; = 1). From Equa-
tion 9, Vl;, AGA;, = 0.5; therefore, the weighted sum
of all these AGA;,’s is also 0.5 (AGA, = ) w; AGA;; =
0.5 Z’u}]’ = 0.5).

Now, let £ learn a stochastic label, I: we expand the
(Boolean) definition of a label in Equation 4 to be a
vector of k real numbers, b; € [0,1], and view each
b; as the probability that { classifies e; as C) (earlier
b; € {0,1} in Equation 4). Similarly, we change the
definition of é(a, b) so that §(a, b) = 1—|a—b| (for a,b €
{0,1}, this reduces to Equation 5). Then summing
over the two labels {Cy, 1} for each e; gives 0.5 for
any value of b;: AGA,(e;) = (8(b;,0) + 8(b;,1))/2 =
(1—b;+1—-(1-18;))/2 =0.5. (Alternately, we can
represent a stochastic label as multiple Boolean labels,
l;, with varying weights, w;, (3°w; = 1) which also
results in an AGA; = 0.5 as discussed earlier.)



Finally consider the situation where the target con-
cept, C, itself is stochastic. Assume that each e; € Z
is assigned to C7 with probability ¢; and to Cy with
(1 — ¢;). Summing over all concepts is interpreted by
the CLGP as meaning that ¢; varies uniformly over [0,1].
Then by integrating over the interval, [0,1], we get
Ve;, AGA,(e;) = 0.5. (If £ assigns e; to be Cp, we
get AGAc(ei) = [y 6(0,q:)dg; = [, (1 — g:)dgs = 0.5;
if L(e;) = C, then AGAc(e;) = [y 8(1,q:)dg; =
fol(qi)dqi = 0.5.) (Similar proofs exist in [Wolpert,
1992].) For more details, including extending the

proofs to concepts that are combinations of the above
situations, see [Rao et al., 1995).



